Mortgage structure, saving rates and the wealth distribution

Luís Teles Morais

Nova School of Business and Economics

Doctoral Workshop on Quantitative Dynamic Economics University of Konstanz, **9 October 2025**

Mortgage *debt* contracts are a large *saving* plan

- ullet Homeowners: $\sim 60\%$ of saving is mortgage <u>re</u>payment in the Euro area (similar in US)
 - $ightarrow \sim 40\%$ of the population
- In many countries (Euro area, US), only available structure is a fully amortizing annuity loan:
 - ightarrow Fixed payment = interest + principal. Balance ightarrow 0 at maturity
- Repayment schedule fixed at origination and costly to deviate from (refinancing, late penalties, ...)

Mortgage *debt* contracts are a large *saving* plan

- ullet Homeowners: $\sim 60\%$ of saving is mortgage <u>re</u>payment in the Euro area (similar in US)
 - $ightarrow \sim 40\%$ of the population
- In many countries (Euro area, US), only available structure is a fully amortizing annuity loan:
 - \rightarrow Fixed payment = interest + principal. Balance \rightarrow 0 at maturity
- Repayment schedule fixed at origination and costly to deviate from (refinancing, late penalties, ...)

Mandatory amortization schedule $\Rightarrow \uparrow$ saving, \downarrow consumption

Bernstein and Koudijs (2024 QJE), Backman and Khorunzhina (2024), Backman et al. (2024); Larsen et al. (2024)

Mortgage *debt* contracts are a large *saving* plan

- ullet Homeowners: $\sim 60\%$ of saving is mortgage <u>re</u>payment in the Euro area (similar in US)
 - $ightarrow \sim 40\%$ of the population
- In many countries (Euro area, US), only available structure is a fully amortizing annuity loan:
 - \rightarrow Fixed payment = interest + principal. Balance \rightarrow 0 at maturity
- Repayment schedule fixed at origination and costly to deviate from (refinancing, late penalties, ...)

Mandatory amortization schedule $\Rightarrow \uparrow$ saving, \downarrow consumption

Bernstein and Koudijs (2024 QJE), Backman and Khorunzhina (2024), Backman et al. (2024); Larsen et al. (2024)

This paper. A theory of consumption/saving under different mortgage structures suggests:

- This can be rationalized by standard model w/ costly deviation from repayment schedule
- It may have large, heterogeneous effects on saving over the life cycle \rightarrow wealth distribution

This paper

Life cycle model of homeowners facing uninsurable income risk and a fixed amortization schedule

- Explains large effects on consumption in empirical literature $\rightarrow \uparrow \uparrow$ saving rate
 - → Effects are heterogeneous: younger, poorer homeowners save more; others unaffected

This paper

Life cycle model of homeowners facing uninsurable income risk and a fixed amortization schedule

- Explains large effects on consumption in empirical literature → ↑↑ saving rate
 - → Effects are heterogeneous: younger, poorer homeowners save more; others unaffected

Matches novel stylized facts from household wealth data in Europe

- Younger and lower-income/wealth homeowners with an amortizing mortgage save more
 - → Homeowners 30-40y.o. in Europe save 2x more than renters/free users
- Homeowners with interest-only mortgages in Netherlands similar to renters
 - → No differences among older, richer groups

This paper

Life cycle model of homeowners facing uninsurable income risk and a fixed amortization schedule

- Explains large effects on consumption in empirical literature → ↑↑ saving rate
 - → Effects are heterogeneous: younger, poorer homeowners save more; others unaffected

Matches novel stylized facts from household wealth data in Europe

- Younger and lower-income/wealth homeowners with an amortizing mortgage save more
 - → Homeowners 30-40y.o. in Europe save 2x more than renters/free users
- Homeowners with interest-only mortgages in Netherlands similar to renters
 - → No differences among older, richer groups

Large implications of mandatory amortization for wealth accumulation & distribution

- † Saving rates for young and lower-income homeowners but leaves them more exposed to shocks:
 - \rightarrow † Total wealth/income ratios, but \downarrow liquid wealth \Rightarrow higher % HtM, MPCs, C volatility

Contribution to the literature

- Effects of mortgage amortization on household consumption and saving

 Backman and Khorunzhina (2024), Bernstein and Koudijs (2024), Backman et al. (2024); Larsen et al. (2024); Attanasio et al. (2021)
 - → This paper: clarify role of precautionary saving mechanism + long-run effects

Contribution to the literature

- Effects of mortgage amortization on household consumption and saving

 Backman and Khorunzhina (2024), Bernstein and Koudijs (2024), Backman et al. (2024); Larsen et al. (2024); Attanasio et al. (2021)
 - → This paper: clarify role of precautionary saving mechanism + long-run effects
- Optimal mortgage payment structure
 Boar et al. (2022); Balke et al. (2024), Boutros et al. (2025); Campbell and Cocco (2015), Campbell et al. (2018), Chambers et al. (2009),
 Greenwald et al. (2018), Guren et al. (2018), Piskorski and Tchistyi (2010, 2011)
 - → This paper: (heterogeneous) effects on household wealth and welfare of repayment rigidity

Contribution to the literature

- Effects of mortgage amortization on household consumption and saving

 Backman and Khorunzhina (2024), Bernstein and Koudijs (2024), Backman et al. (2024); Larsen et al. (2024); Attanasio et al. (2021)
 - → This paper: clarify role of precautionary saving mechanism + long-run effects
- Optimal mortgage payment structure
 Boar et al. (2022); Balke et al. (2024), Boutros et al. (2025); Campbell and Cocco (2015), Campbell et al. (2018), Chambers et al. (2009),
 Greenwald et al. (2018), Guren et al. (2018), Piskorski and Tchistyi (2010, 2011)
 - → This paper: (heterogeneous) effects on household wealth and welfare of repayment rigidity
- Wealth distribution: housing drives dynamics through return rates
 Saez & Zucman (2016); Jorda et al. (2019), Fagereng et al. (2020), Kuhn, Schularick & Steins (2020); Martinez-Toledano (2022)
 - → This paper: role of saving rates channel due to mortgage contract design

Agenda

- 1. Introduction
- 2. Model framework and insights
- 3. Data: stylized facts and calibration
- 4. Model results
- 5. Conclusion

Model framework and insights

Model framework

Overview

Standard incomplete markets model + mortgage debt

- First-time homebuyer life-cycle
 - → From origination to maturity of the mortgage
- Basic features:
 - → Two asset types: **liquid safe asset** (risk-free) vs. **mortgage debt**. Housing fixed
 - → Idiosyncratic income risk (permanent + transitory)
- Key addition: mortgage contract transaction costs
 - → Mandatory amortization schedule: cost to delay repayment
 - → How does this wedge affect saving and wealth accumulation?

Model

Household life cycle endowments and decisions

- ullet A home worth P_0 (normalized) and a 30-year fixed-rate mortgage with initial balance M_0
- ullet Some initial financial wealth: A_0 and exogenous risky earnings Y_t over the life cycle
- Decide each period on how much to:
 - ightarrow consume c_t and save each period
 - \rightarrow repay d_t of their mortgage debt

Households in the model maximise utility from non-housing consumption:

$$U(c_t) = rac{{c_t}^{1-\gamma}}{1-\gamma}$$

- ullet Only non-housing consumption enters utility (housing H fixed)
 - o Assumption: prefs separable, so $rgmax\sum_t u(C_t) = rgmax\sum_t u(C_t,ar{H})$ (Campbell-Cocco 2015)

Model framework

Assets & mortgage frictions

Liquid saving and mortgage debt

- Savings in the liquid asset (a_t) earn risk-free interest
 - \rightarrow Borrowing limit $a_t \geq 0$ (no unsecured debt)
 - \rightarrow Household cannot increase mortgage debt, only repay $d_t \geq 0$
- Outstanding mortgage debt demands interest r+s

Mortgage repayment schedule

- Mandatory amortization: $D^*(m_{t-1},\,t)$ from standard annuity formula
 - ightarrow Deviating from repayment schedule $d_t < d_t^*$, then incurs transaction cost $au_t > 0$
- If default, lose house and keep low consumption \underline{c} until end
 - ightarrow Repayment usually feasible under calibration $y:y>D^*(m_{t-1},\,t)+m_{t-1}(r+s)$

Model insights

Period problem

$$egin{aligned} \max_{c_t,d_t} \, u(c_t) \, + \, eta \mathbb{E}_tig[V_{t+1}(y_{t+1},a_{t+1},m_{t+1})ig] \ \ a_{t+1} &= (1+r)ig[a_t + y_t - (r+s)m_t - d_t - oldsymbol{ au}_t - c_tig] \ \ m_{t+1} &= m_t - d_t \end{aligned} \qquad m_t \geq 0, \ a_t \geq 0$$

• Key friction: scheduled repayment d_t^* , underpaying costs $au_t \equiv au \cdot \max\{0, d_t^* - d_t\}$

FOC for amortization trades-off marginal value of liquid asset accumulation vs. mortgage repayment

Model insights

Period problem

$$egin{aligned} \max_{c_t,d_t} \, u(c_t) \, + \, eta \, \mathbb{E}_tig[V_{t+1}(y_{t+1},a_{t+1},m_{t+1})ig] \ \ a_{t+1} &= (1+r)ig[a_t+y_t-(r+s)m_t-d_t-oldsymbol{ au}_t-c_tig] \ \ m_{t+1} &= m_t-d_t \end{aligned}$$

• Key friction: scheduled repayment d_t^* , underpaying costs $au_t \equiv au \cdot \max\{0, d_t^* - d_t\}$

FOC for amortization trades-off marginal value of liquid asset accumulation vs. mortgage repayment

• For some states (a, y, m), without the cost of delaying $(\tau = 0)$, $d_t < d_t^*$ preferable:

$$(1+r- au)\mathbb{E}_t[V_a']<\mathbb{E}_t[V_m']<(1+r)\mathbb{E}_t[V_a']$$

- ullet au introduces wedge: if liquid assets/income low, but not too much, HH sticks to d_t^* and reduces c_t , a_{t+1}
 - ightarrow If au=0, HH would prefer to delay repayment and increase c_t , a_{t+1}
- Far from liq. constraint, $\mathbb{E}_t[V_a']$ is lower so au irrelevant (as s>0)

Model insights

Mechanism: how amortization frictions affect saving

Predictions for consumption and saving under mandatory amortization

- Stronger effects for:
 - → Younger: higher expected income growth, lower income, lower wealth (life cycle; down payment)
 - → Lower-income: houses, mortgages indivisible
- Little or no effect for wealthier or higher-income homeowners
- Compared to:
 - → Flexible repayment scheme (e.g. *interest-only mortgages*)
 - → Renters and others
- Consequence: higher saving rates for constrained mortgaged homeowners
 - \rightarrow Matches stylized facts in Euro area data \rightarrow life-cycle and income/wealth saving gradients

Data: stylized facts and calibration

Data from euro area countries, focus on NL

The Eurosystem HFCS - Household Finance and Consumption Survey

- Harmonized survey of households in Euro area. Three waves (2013-14; 2016-17; 2020-21)
- Compare avg. of Euro area versus Netherlands (NL): mostly interest-only mortgages
- Netherlands policy reform in 2013:
 - → From 2013, MID restricted to **fully amortizing loans** high cost of deferred payment
 - → New borrowers forced to amortize → sharp rise in repayment flows
- Data on saving rates from consumption and net income
- Amortization backed out from regular payment: $12 imes ext{mthly pmt}_i i_i imes ext{debt}_i$, for HH i
 - → The median household in EA amortizes ~10% of yearly income; 2.5% in NL Amortization histograms
 - → Various checks on amortization measure Regular payment / income

 Histogram by waves Annuity formula Interest rates
- Exclude elderly/retired: $\mathrm{Age} > 70$

Amortizing mortgages increase saving at the beginning of life cycle

Saving rates over the life cycle (Age 65 = 100)

Interest-only mortgages show pattern of renters/outright owners

Post-2013 policy

Life cycle profiles of assets and debt

Amortizing mortgage increase saving only for poorer homeowners

Saving rates over the income distribution (Q5 = 100)

NL

- Again IO mortgages show pattern of renters/outright owners Post-2013 policy
- ullet Age + income heterogeneity ullet same patterns over the wealth dist lacksquare saving rates over wealth dist

% of saving going to amortization declines with income in EA, less in NL

Amortization as % of saving flow

• In EA without interest-only, % of saving to amortization very high for more constrained homeowners

Calibration

Income process: inelastic labor supply yields earnings $Y_t = \Gamma_t Z_t \, heta_t$, as standard: (Carroll & Samwick, 1997)

- $\ln Z_t = \ln Z_{t-1} + \ln \psi_t$; $\ln \psi_t \sim Nig(-rac{1}{2}\sigma_\psi^2,\,\sigma_\psi^2ig)$; $\ln heta_t \sim Nig(-rac{1}{2}\sigma_ heta^2,\,\sigma_ heta^2ig)$
- ullet Life-cycle profile Γ and moments of stochastic process from NL micro data (de Nardi et al. 2021)

Initial conditions: loosely matching data moments in Netherlands HFCS

- A home worth $P_0 = 5$ (5x annual permanent income)
- ullet A *small* initial liquid buffer: $A_0=2/12$ of annual income
- A 30-year (fixed-rate) mortgage with $M_0 \leq \theta^M P_0$ (LTV = 100 %, \approx median in NL)

Terminal conditions: bequest motive at retirement to match end-of-life wealth and mortgage debt:

$$B(a_T-m_T)= \underline{b}, rac{\left(a_T-m_T+\overline{b}
ight)^{1-\gamma}}{1-\gamma}, \ \ \underline{b}, \overline{b} ext{ params}$$

• Mortgage must be fully repaid by retirement \Leftrightarrow bequest is net wealth $a_T - m_T$

Model framework

Full dynamic household problem

In practice, solved in terms of consumption c_t and a transformed repayment share ψ_t , where:

$$\psi_t \equiv rac{d_t}{y_t - (r+s)m_t - au_t - c_t} \quad ext{(share of saving used for mortgage repayment)}$$

The household solves the dynamic problem:

$$egin{aligned} V(t,s_t) &= \max_{\{c_k,\psi_k\}_{k=t}^T} \mathbb{E}_t \left[\sum_{k=t}^{T-1} eta^{k-t} rac{c_k^{1-\gamma}}{1-\gamma} + eta^{T-t} B(a_T-m_T)
ight], ext{ s.t.} \ d_t &= \psi_t \cdot (y_t - (r+s) m_t - au_t - c_t) \ a_{t+1} &= (1+r) ig[a_t + y_t - (r+s) m_t - d_t - au_t - c_t ig] \ m_{t+1} &= m_t - d_t \ au_t &= au \cdot \max\{0, d_t^* - d_t\}, \quad a_t \geq 0, \quad m_t \geq 0, \quad d_t \geq 0 \end{aligned}$$

Solution: deep learning algorithm proposed by Duarte et al. (2022), Barrera & Silva (2024)

Model calibrated for the Netherlands data

Description	Value	Target moment	Source
Life time in the model (T)	30	Median age purchase + maturity	
Discount factor (β)	0.96	-	Kovacs et al (2020)
Risk aversion (γ)	5	-	Duarte et al. (2020)
Bequest motive parameters (b)	1.5	Wealth at retirement	HFCS 2017 micro data
Bequest motive parameters (b)	0	Normalization	_
Permanent income life cycle path	-	-	HFCS 2017 micro data
Variance of transitory shocks (σ_y^2)	0.025	Earnings shocks (transitory)	Paz-Pardo et al (2020)
Variance of permanent shocks (σ_z^2)	0.01	Earnings shocks (permanent)	Paz-Pardo et al (2020)
Riskless rate (r)	0.03	Long-run real safe rate	Jordà et al. (2019)
Mortgage spread	0.005	NL median fixed-rate spread	HFCS 2017 micro data
Borrowing limit, liquid (θ^A)	0	Normalization	-
Borrowing limit, mortgage LTV (θ^{M})	100%	NL median LTV at orig.	Lang et al. (2020)

- Replicate regime change
 - 1. Pre-2013: Interest-only free $(\tau=0)$
 - 2. Post-2013: High cost of deferred payment (au=0.5)

Model results

Model HHs forced to amortize cut consumption until mortgage is repaid

Average age profiles of consumption and saving

Costly deferred payment ---- Free repayment

Model HHs allowed to optimize backload repayment

Average age profiles of mortgage balance and wealth

Costly deferred payment ---- Free repayment

Income-poorer model HHs save more in total, but less into liquid wealth

Means of model population across income quintiles (conditional on age)

- Saving rate increases, but $\downarrow C$, liquid savings
- More exposed to shocks \Rightarrow higher MPCs, C volatility

Flattening of saving rate differences reproduces pattern in the data

Saving rates increase for lower income (and younger ages)

Forced amortization increases saving rates at the bottom of wealth dist.

Suggesting effects on distribution of total and financial wealth

- Saving rates increase for groups at the bottom wealth groups
- Implications for wealth distribution: \downarrow total wealth inequality but \uparrow financial w. ineq., %HtM

Conclusion

Conclusion

- Mortgage debt repayment is an important part of household saving flows
- Precautionary saving response of homeowners in standard model rationalizes:
 - ightarrow Reduced-form lit: large effects of mandatory amortization on C
 - → Stylized facts in Europe: young, low-income homeowners save more; richer unaffected
- Important implications for consumption and wealth distribution:
 - \rightarrow \uparrow Total wealth/income ratios, but \downarrow liquid wealth \Rightarrow higher % HtM, MPCs, C volatility
 - → Financial stability benefits must be weighed against costs for households
 - → Younger, lower-income households seem to be unduly penalized

Thank you!

Reach out: luistelesm.github.io | luis.teles.m@novasbe.pt

Data: mortgage amortization in the HFCS

% of regular payment going to amortization

% of household income going to amortization

Amortization by wave

Amortization for mortgages before and after 2013

Dashed lines indicate medians.

Percentage of obs. where amortization is less than 5% of the regular payment:

	NL	others
Mortgages before 2013	30.1	1.7
Mortgages on or after 2013	11.8	1.0

Interest rates

Amortization implied by annuity formula

• If mortgage is an annuitized loan, the amortization paid as part of the installment in period t is:

$$L imes r imes \left(rac{1}{1-rac{1}{(1+r)^{T-t}}}-1
ight)$$

ightharpoonup where L is the outstanding amount, r the loan rate and T the residual maturity.

 This is what we observe for the median HH in the overall sample but not in NL:

Note: Dashed lines indicate country group medians.

Weight of regular mortgage payments on income

Regular mortgage payment / net income, %

Note: Dashed lines indicate medians.

Saving rate measure checks

Match with self-reported ability to save:

HFCS aggregates vs. national accounts (QSA)

Data: saving rates in the HFCS

Saving rates increase with wealth for both

- Decline in old age in NL
- Interesting, as illiquidity of housing possible reason for plateau of saving (eg Yang 2009)

Data from Euro area countries

Saving rates over the wealth distribution (Q5 = 100)

Saving rates over the wealth distribution

Mortgaged homeowners vs. others

• Waves 3 and 4:

Saving rates over the wealth distribution

Mortgaged homeowners vs. others

Saving rates over the life cycle

Saving by homeowners in NL and others

No substantial difference between post-policy reform mortgages

Saving rates over the wealth distribution

Saving by homeowners in NL and others

No substantial difference between post-policy reform mortgages

- Life cycle profile of savings and mortgage debt
- Strict subsample of households who:
 - → Have never refinanced
 - → Live in their first home
 - ightharpoonup Roughly identified by age at purchase ≤ 35
- Interest-only mortgages: those for which amortization is < 80% implied by annuity formula

Model solution details

HH problem and solution

Basic principle uses stochastic gradient descent to find parameters of neural network that solve for the optimal policy function.

- Machine learning techniques allow to compute the gradient $abla_{ heta} ilde{V}\left(s_{0}, heta;\hat{\pi}
 ight)$
 - → Computationally feasible with ML infrastructure, as neural networks are designed to work with problems with many dimension
 - → JAX-based solution (implemented by Barrera & Silva, 2024, nndp)
 - → Solved using Google Cloud TPU
- Adjust θ according to:

$$\Delta heta = -lpha
abla_{ heta} ilde{V} \left(s_0, heta; \hat{\pi}
ight)$$

- \rightarrow i.e., move in the direction that reduces the loss function (-V) the fastest
- $\rightarrow \alpha$ is the learning rate